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There are several reasons for studying deterministic models of computer

systems and their work loads

(1) With datermiinstic models, w(: can carry out a worst-case or a best-

case analysis so that we can obtain upperbounds or lower-bounds on the nerformance

:of a svstem tinder ill nossible circumstances;

p

(2) Effects of variation of system parameters can be studied more

directly and exllicitly;

(3) There eists the possibility of designing o~timi). algorithms for

f the effective utilizacion of system resources, Such algorithms often behave well

when the systems deviate from the (deterministic) model.

We present here three closely related topics to illustrate some of the

aspects of deterministic modelling. Aooession For
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, - A MODEL

We describe first a general model of computing system which can be

specialized in various ways to include most of the results we are going to present.

We make the following assumptions

5S'- (I) A computing system consists of two classes of resources, dedicated

resources, and shared resources. In each class, there are different kinds of

resources.

(2) There is a certain number of units of dedicated resources of eachU; kind, The execution of a job requires an integral number of units of each kind,
including zero unit as a possibility. The execution of a job completely occupies

a unit, and no other jobs can be executed on the same unit concurrently. Examnes

of dedicated resources are processors, input-output devices, and so on.

(1) Thr is ai unit of shared resources of each kind'. The .xecuton of a

job requires a fraction ot the unit of each kind of shared resources, including

zero as a possibility. Concurrent execution of a number of jobs might share the

sain uni t of shari resourc,,s, provided thac thu 5um of the fractions of the unit

they shar., does not t Pe( one. !'.:mples of shared resources are core memories,

magnetic disks and drums, dnd so on.

(4) The units of each kind of dedicated resources might not be identi-

cal. It might be the case that the execution times will be different when a job is

executed on different units of one kind of dedicated resources. It might be the

case that job can only be executed on some of the units of a particular kind of

dedicated resource. Since the execution of a job might require, in general, more

than one unit of dedicated resources of each kind, the execution of a job is said

to be completed if its execution on all units is completed.

(5) The unit of each kind of shared resources is considered to be

uniform. A job will release the portions of shared resources it occupies when

its execution on all units of dedicated resources is completed.

There is no loss in generality in normalizing each kind of shared resources to

one un i t.
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Let fil J Ji,..1 be a set of jobs and < be a precedence

relation on J ". That JK < .q means the execution of job I cannot begin until

the execution of job J has been completed. JK is cali-d a redecesor, and "

is called a successor ofJ K. A set of job is sai, tc be independent if the pre

cdence relation < is empty. Each job in J is specified in the following way

'Let p denote the number of kinds of dedidited resources and n denote the number

tof units of each kind" in the cumputing syrtom on which the set of jobs J is to

be executed. Let q denote tie number of knds o0 shared resources. The utiliza-

tion of the dedicated resources by a job JK is specified by a p w n matrix

in[ a p component vector UK I.i, where 0 t . wind fr each

i there vxists at Least one j such that t. ", and ui. is an integer such that

0< . n. The valti, o. t, . is tihe time it Lakes to execute job J on the jth unit
= L) .th .i
f dedicated reources Or L1he x kind. That t. i means that job JK cannot be

executed on the Jth units or dedicated resources on the i kind. The value of
th

u. is the number of units o . dedicated resources on the i kind which the
execution of job J recuires. ** Similarly, the utilization of the shared

resources by JK is specified by a q component vector VK a IIvill, where 0 v

The value of v. is the fraction on the ith kind of shared resources which the
execution of job JK requires.

IT - SC EIIhi N C( "1TO I;I" COMIPLET'ION '[[Tl,.

By schedul ing 1 e of jobs oil a vinputing system, we mecan to assgn

within certain time interval(s), to each job resources that are needed for its

execution with the constraint that all the resources needed for the execution of

a job are assigned Lo the job simultaneously. A scheditle is a specification of the

assignment of resources to the jobs, and a scheduling algorithm is a procedure

that nroduces a schedule for every given set of jobs. By preem2tive scheduling

discipline ,we mean to allow the interruption of the execution of jobs in a

schedule. By non-pree.ptive scheduling discipline, we mean the execution of a

job must continue until completion, once its execution commences.

Different cr..teria can be used to measure how good a schedule is. The

,,ost common one is the completiot time of a schedule, that is, the total time it

A precedence relati.on is a binary relation that is antisymnetric and transitive.

As will be seen, there is no !oss of generality in assuming that there is the

same number of units in each kind ot dedicated resources.
A* th

"or each i, u. is not larger tha. the number of finite entries in the i row

of T.,
_vx

m 

I n . .
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thks to complete the execution of a set of jobs according to the schedule.

Cldrly, for a givdn set of jobs, a "good" schedule is one q'th "short" completion'

fnjd,, and an optimal schedule is one with shortesL possible execution time; The

effectiveness of a scheduling algorithm is measured by how good the schedules it

produces are. One might wish to consider the worst case performance of a sche-

duling algorithm, or one might wish to consider the average case performance Of a,

-scheduling algorithm. M!ost of the current works are concerned with the worst

case performance analysis of scheduling algorithms. W. sh all make an attempt to

identify some of the gener:,l features of scheduling algorithms whose cffective-

ness will be measttred by the completion time of the schedules they produce.

1. There are algorithms that produce optim al schedules. Clearly, opti-

mal schedules and algorithms that produce optimal schedules are of significant

interest. Unfortunately, very little is known about "efficient" algorithms that

produce optimal schedules for arbitrary computing systems and arbitrary sets of

jobs. As a matter of fact, efficient algorithms that produce optimal schedules

are known only for the following cases

(i) Jobs havinR unit execution times with the nrecedence relation over

them being a forest are to be scheduled on a cumputing system with P

identical processors.

(ii) Jobs having unit execution times are to be scheduled on a computing

system with two identical processors.

14e shall describe an algorithm due to Hu 31 which nroduces an optimal

schedule for case (i). We introduce first the notion of demand scheduling

algorithm. A demand scheduling algorithm is one that always artemps to schedule

executable jobs on resources that are free at any time instant. In other words,

a demand schedulinr algorithm never leaves any resources idle intentionally. : A

A narticularlysimple class of demand scheduling algorithms is known as list

scheduling algorithms. A list scheduling algorithm assigns distinct priorities P

+A job is said to be executable at a time instant if executions of its predeces-

sors have all been comnleted at that time instant.
It is not difficult to construct e:,amiles to show that there are ontimal sche-

dules in which resources are left id;e intentionally.



to jobs and allocates resourccs to jobs with highest priorities among all. executa--

ble ones at any ti,-e instant.

H~u's algorithm is a list scheduling algorithm. 'le -define first the

notion of the level of a job

(i) 1The level of a job that hans no successor is (IC ined to he I .

(ii) The Level of: a job that one or more successors is acunI to one plus

the maximum value of the levels of its successors.

In Hu's algorithm priorities are assigned to jobs according to their levels such

thatr jobs of higher levels will have higher priorities. (,%ssignment of priorities V[ to jobs of the same level is arbitrary.) ilsu 11121 contains a simple proof that

Itu's algorithm produces optimal schedules for case (i). See also Chen and Liu [41.

Fuj ii, Kasami, and 'Ninomiya FF21 and Coffmanand Graham [*C7] discovered7

algorithms that produce optimal schedules for case (ii). I-e present here Coffman

and Graham's aigori-Lh, which is also a list scheduling algorithm. In Coffman and W

Graham's algorichm, priorities are assigned to Jobs as follows

(i) Starting with 1, which is the lowest priority, distinct and conse-

cutiv.e nriorities arc assigned to jobs- that have no successors

arbitrarily.

ii) "riorities are assigned to jobs with one or more successors

recurs~vely

(a) A job to all of whose successors priorities have been assi-

L Tned w,;il lie labelle~d .,i Lith :l pri oritios of i ts succ.cssors

S)in decronsing odr

uj~ ~.-pa-et:1e : abo is Of al I I oid j obs accord: ng to the

-)L.:irap-nic.i. or'der. S*_irins; with the .cwest. u.issigned

;' riori t', distincr -in(: c;*ns~cuct:,i%. pr.oritios' are is-~ntl

I, hO i;nbV110ld -ohS suc.h Lhat joh-s with larger labols wil I be

i 'ethi gher .rioritie"s.

4'- ..- T-



We should point eutt that there is a larg~e body of~ li tcratures on obtai-

nling optiiaL. schedules by the me.thods Of CUMPlLL enumeration, mixed integer and
nonlinear progyaiuniing, and dynamic prograrmming. Note thau in these approaches,

the computation t irm requi red to produce an opti malI schediLu will. be an expooen-,
tia I functioni ofl the numhur of Jobs to be schcduled. We refer the reader to

LeIIsira I i nd !inooy, Kan [RI 1 Sec also liorowit:: and Sahni [ III" and Sahni Sii.

2. There are szinnle schcdul inig .11vori turs vhat spcnd vorz little effort

to~~ ~~ Merhft t~h*i eAmost. dirrtl Ovppos i It! Lt C:I' appoIch.lVI Of S1101nding a

lot (,I* e t:o rt to) (it Lo rnfl ' In on timal s ciduic Ie*oti coti Id consider the anroacll

of STICn-I i ni I iLLt or :10 L r o search 'or aI rea*sonabi) fvood schedule. Tn

v o )r L!I. II!'.tv *I-.,') f t 1w v I I , s o ' P-c~i wp I e*i Lk ob I MS. such an approach beco-
mies a partic ila r ly irtracctive one. (As generaL references to the area of approxi-

maition a..rtisese Jolinson lJ II and Carey and Johnson [(;2. ) . For example, a

ve r v siilek SCIeIillin gl"rithIM iS I list SChel LIing algorithim with arbitrary

ass~.'imetof priori tics. ii foilowing result is dutt Lo Graham rG6, r,7, G81

lb *r.'gIFor -i cnill)Ii~lng svsr.cmri Lli 11 idoni~cal processors, let U,

du-nutc Lit! cerT~p v~e l CL,,u ot .'. schiedu Iu for a given qet oft Jobs produced by an

arbi trary Iiist schedu i n ; tk.or;Ll thIn ad jut denote the shortest poss ible cont-

pletion Lile. V!Iii~n

For ni = 2 , t' tneo'.i/ ( in Tiieo r ! I Is uppe rhounded by the cons-

tat3/2. Tha"t is, in Lorm.s of the,. comniotion time a schedule nroduced by any

ist ,;chodu I ine alIgc'r 4-,.ni not ,:ors.2 t:,an an tta.schect.ule by 507. "'hen

the nw-h!er of proc, ssors in1 the systcn increatses, although0 the comnarison

occormes le!s Vr5e e sub-ontimal schiedule is oever t.c-rse than an ontimal

schedule bY 101)~

romi now ('n1 * e SlI. conlsi s tentiy use w to dcknotc the c.mlp let ion t ir.-e of an

arbitrarv icht*dul- Lo t denote the ronmpietion time' off an optimal schedule.



Theorem I can be extended immediately

Theorem 2 (LAu and Liu L7]):For a computing system with n I ptocessOs-

of speed b, n 2 processors of speed b2, n processors of spedd bk whe6

b b > > .. : Ihk , we have ..

"-- b k  k
0 k n. ..

jul 1' L

Garey anti Graham l 1, and Yao CYI ] studied list scheduling algorithms

for compting systemS with shared resources. For example, similar to Theorems I

and 2, we have.

Theorem 3 (Garey and Graham GID]) : For a computing system with n

identical processors and one kind of shared resources, we have

< n0

'rheorein " (Cary and Graham [CI 1) : For a computing system with two or

more processors and q kinds of shared resources and for a set of independent jobs, r
we have

I+ vi n~ q +" 2

See also il, KI, L7, L8, L91 where various extensions of th, case

where the processor are not identical were studied.

3. There are cases in which an algorithm that produces optimal schf.dules

under a cortain seL of conditions is applied to situations that do not satisfy

these conditions. The following results illustrate this point

"neoren 5 (Chen I'C2]1) : Whflen Ilu's algorithm is applied to schedule a

se of j'bs wiLil unit execution times on a coviputing system with n identical pro-

c sosots. Then



<4 n 2+ 0=3

W< 2 >. 3.
o  n-n

Theorem 6 (Lam and Sethi (42.1) : W en Coffman and Graham's algorithm

is applied to scheduke a sec. of jobs with unit execution times on a computing

*ystem with n identical processors. Then

W 0 11

Kifman rKui extended ]lu's ailgorithm to Lie scheduling of jobs with

unequal execuLit n times on a computing systom wiLh n identical processors, where

the precedence rel, cion over the jobs is a forest. By defining the level of a job

to be the !eni.th of the chain between the job and the root of the tree it is in

(including tihe execution time of the job itself), Kaufman has shown that

Theoremn 7 : In Lhe extended llu' s algoriLhm described above

p

u < w + k - k/n

where w is the completion time when tile jobs are executed according to an opti-p

mal preemptive schedule, and k is the execution time of the longest job in the

set.

4. Thereare algorithms that perform a certain amount of computation

in order to produce good schedules. For example, consider the problem of schedu-

ling a set of independent jobs on a computing system with n identical processors.

If -' sort the jobs according to their execution times and assign high priorities

to jobs with long execution times, we can upperbound the worse case behavior of

such a list scheduIin g algorithn by

Theor.m 8 ('Graham FG7J) : For the scheduling algorithm described above

U) 4 _ I S
) < 4

CO0 3 3n



ixte5to of the idea of assigning high priorities to jobs with long

execution times to computing systems with non-identical processofs have been car-

-tied out in Gonzales, Ibarra, and Sahni. [G9I, and Tbarra and Kim (II]

As atiother example, we consicle, the following aigort imh for scheduling

a set Io" illdepundent jobs oila Ionlu)ttiln; syst-,llo will 11 identical processors : W6

pick out Llt k longest jobs in the set and schdule them in such a way that tie O
total execution . ime (for the executon of these k jobs) is minimum. The remai-

ning jobs will h se:ht-duled ,tccording to th: rtile that whenever a processor is

free an arbitrarily chosen joh will be executed on tha t processor. GCraham %G7]

has shown that

Thor,,, : For the scheduling algorithm described above

I'
-- < I +

5. One can considor algorithms that produce schedules which are as

close to Opt ini:l Id'iiea ,s it is desi red at tho expense of computation time.

An algorithit is said to be an .'-approximation algorlthm if for a given ' the

algorithm will yield a schedule such that the ratio (i-wO)/w 0 is less than e.

Sahni [SIJ studied the problem of scheduling a set. of independent jobs on a com-

puting system with n identical processors and obtained an c-approximation
' )n-I

a Igori lh whosv, t'mpl l, xit y i.; & ( (m / . ) ) wlore ill is thle number of .Jobs is the

Set.
I i - SClIiII'; T i ') .HIj..t' I)E.j)I.I.H.

To illustrate some other aspects of tile scheduling problem, we shall

survey some of the results on a generalization of our model by assuming that each

job has a ready time, a time at or after which execution of the job can begiti,

and a deadline, a time at or prior to which execution of the job must be comple-

ted.Fora given computing system with fixed amounts of resources, a set of job is

said to be scaedulable Lr there isaschedule according to which all jobs can be

executed to mcet their deadlines. Such a schedule will be referred to as a feasi-

b,. schedule for the set of jobs. A set of jobs is said to he schedulable by a

scheduling, algoriLh,, if the algorithin yields a feasible schedule for the set.

CoUsequently, a schedkiling: 11otithin is said to be optimal if it
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yields a feasible schedule for every schedulable set of jobs. On the other-handi

if -a, scheduling algorithm is not optimal, one would wish to measure the-effecti-

-veness of the algorithm is terms of the fraction of schedulable ects of jobs it

is cap.ble of scheduling.

I. Optimal scheduling. Garey and Johnson rG4, C51 obtained an optimal

sehcduling algorithm for the following case

(i) The computer system has two identical processors.

(ii) Each job has unit uxecution time.

(iii) Fach job has a prespecifivd ready time and deadline.

(iv) There is an arbitrary precedence constraint over the jobs.

Garey and Johnson's algorithm yields a schedule that enables the completion of each

job before each deadline i such a schedule exists.

2. Real-time scheduling. In many cases when a computer is used for

control or monitorint funcci.ons, the following model is encountered.

() There is a single processor in the computer system.

(ii) Each job has a ready time and a deadline.

(iii) The execution of a job can be preempted by a another job.

In [LI, 1.6, S31, an algorithm know as earliest deadline first algo-

riLthn| has been shown to be optimal. The earliest deadline first algorithm always

execuLe a job that has the earliest deadline among ali the ready jobs. Thus, a

newly arrived job will preempt a job that is currently being executed if the new P

arrival has an earlier deadline. The earliest deadline first algorithm is optimal

in the sense that if a set of jobs can be scheduled by any algorithm, it can also

be schedulted by the earliest deadline first algorithm.

Some variations of the pr blem are



(i) the execution of a job cannot be preempted.

(ii) Tliere are two or more processors in the computer system.

(iii) There is a precedence constraint over the jobs.

(iv) The execution of a job roguires other kinds of resources.

3. Jobs wti;h Peritdic Requests

A special case of real time -cheduling was studied in [L6]. In this 6
case, a jot consists of a periodic stream of requests. That is, a job Ji demands

periodically Ci 1Ls of computacion time in uvery Ti units of time (Ti is refer- 0
red to as the reque' t period), and the deadline of a request is assumed to be the

ready time of the next request of the same job. Although the earliest deadline

first scheduling algorithm can b,! applied to this case, another scheduling algo-

rithm known as the rate monotonic algorithm tis been studied. In the rate monoto-

nic algori Lhmn, requests of a job with the shortest request period always have

priority over the requests of a job with a longer request period, Not only such .0

an algorithm is easy to implement, its simplicity also enables us to carry out a

more thorough analysis of iLs performance. 'e hav

i C. I/n

Theorem I : Any sot of n jobs with n (2 1) can be sche-
i=I t

duled by the rate nionotonic algorithm to meet ,lI deoadlines. Furthermore, there
n C. (1/a

is a set ot n jobs wih ," > n - I) that cannot be scheduled by the
i~l L

rate monotonic algorithm.

Theoreni I is again another example illustratLng the possibility of

lower bounding the performance of a system. Note that Ci/T i is the percentage of

time the jobs Jd wil utilize the processor. Consequently, Theorem I says that if P

a set of jobs doesnot try to utilize the processor beyond a certain percentage,

the rate monotonic algoriLm can guarantee that all deadlines will, be met . (Spe-

cifically, for n=2, n (2 - I) = 0.828, for n - -, n (2 - I) - 0.63). Note

that there are sets of jobs with a t tal utilizatiqn above the bound which can

still be scheduled by the rate monot .nic algorithm. ihwever, our bound provides

P.



ii.uhanted under the worst possible situation.-

Another resuet of the same flavor is an 'estimation on the slack rime

of a request which is defined to be the time span between the completion- of the

de., cution of a request and its deadline. In many practical situation, not only

do .we wish to meet all the deadlines, we also would like to have a lUrge slack

time if possible. Wk, Can 4show that 103I

Thoorom 2 : Lf the f irt requests of alIl jobs occur at t - 0, then the

slack time of any requltest is larger than or ocqual to the slack time of the First

request or the Saint Job.

it C.
Theorem I : For a set of 11 jobs with F n (2 ), the slack

time (if any request- is~ largvr than a1 equal to 0.207 1; where S is the last quantum

of processor time allocated to the first rvquest of the same job.

Theorem_4 : For a set of n jobs wich F -~ < n ( 2  1 ) and with

?~2'I Hiv slack tinte of any request of J is larger thin or equal to

0.207 g where 9 is the list quantumt of processor time allocated to that request.

Again, note the possibility of lower bounding tr-2 pk.rformance of a

system under sonie very general. conditions.

IV - MIN PACKING ALCURLTIIM

The bin packing probtem can be described as placing a list of "pieces"

of size larger than 0 and Less than or equal to I into "bins" of size ! so as to

minimtize the total number of bins utilized. There are sbme imimediate interpreta-

tions of the bin picking problem

(i) Tilblo forMittinFg To place itens of data (pieces) in computer

words of fixed size (bins).

(ii) Prepaging :To place progorain segments (pieces) into pages (bins),

(iii) File allocation : lo niace Files (nieces) on disk tracks (bins).

A bin oackin: ali irithm i said to 'eorntir'al i'* it uses the mini-"'u'



number of bins. On the other hand, the performance of a suboptimal algorithm can

be -mpasured by the quantity lir t(k), where for a fixed k F(k) is the maximum

number of bins uspd by the algorithin over all possiblelists of pieces that can

be packed into k h(ns by an optimal algorithm divided by k.

I. On-line Algorithms

A bin packing algorithm is said to he an on-line algorithm if the pie-

ces ace available one at a time and a piece must he assigned to a bin before the

next one becomes avillable. We mention first tliree well-known alorithms

Next fit (NF) alsiorithm : A piece will he place into the "current bin"

if it can he fit into that bin. If not, a inw bin will be used and will be desi-

gnated the current bin.

First-fit (F. algorithm : the bins will he indexed lli, B,,... A piece

will be placed into a bin lj that can accomodate it with the smallest index j.

Best-fit (BF) algorithm : The bins will he indexed BI, B2... A piece

will be placed into a bin that has been filled to a highest possible level and

can still accomadate the piece. If there are more than one such bin, choose the

one with the smallest index j.

We have CJI

Theorem. I

; im NF(k) = 2

urn FF(k) = 1ItC
17

lim BF(k) = 7
k -, P.)I

A new on-lin- algorithm was proposed by Yao CY2] which is known as the

refined first fit (RFF) algorithm. The refined first fit algorithm can be descri-

bed as follows



(1) A-piece will be datted an Apce 1 pecpic 6r X -pied Jt

'V'ki'f de S ie Of the piece is in the interval (1/2, 1.l, (2/5, 1/2], (1/3, 2/5), or

X4 113], respectively.

(2) The set of all bins are divided into four infinite-classes, to

be referred to as class 1, 2, 3, 4, respedtively.

(3) Let m be a rixed integer whose valtie can be chosen as 6, 7, 8,

or 9.

(4) Suppose the first j-I pivces have been assigned. The j h piece

will heassigned accordinp, to the first-fit algorithm into a bin of a certain

class. In particular,

(i) If it is an A-piecc, it will be assigned to a class I bin.

(ii) If it is a JA-piece, it will be assigned to a class 2 bin.

(iii) If it is a 11-piece, but not th(, (mi)-th B 2 -Piece seen so far

for some intevgr i 'I, it will be assigned to a 'lass 3 bin. If it is the (mi)-th

W2-pie~e for some integer i ;! 1, it will be assigned to a class I bin containing

an A-piece if possible, or to a new class I bin otherwise.

It can be shown that [Y21

Theoreim 2 : I im RFF(k) =

Yao I Y2 has also obtained a lower bound on the performance of any

on-line bin packing algoritlm

3
Theorem 3 : For any on-line packing alsorithim S, I irn S(k) > 3

2. Off-line Algorithms

A bin packing algorithm is said to he an off-line algorithm if all

the piece" -or packing are available before comnaencing.

First-fit decr,,asing (FF), al gorithin : the pieces are arranged is non-

incres;ng order according to size ant then apply the firsL-f it algorithm.



i est-fit decreasing (BFD) algori~thm : 'The pieces are drahg@d in non-
incressing order according to size and t~hen ap~ply ' tlt, I)esl f; alort1

Theorem 4 [J]:

lir FFD(k) a--

lim IT~:D(k)

k 9

3. VarLion of Parameters

f Vor a give sysLem with a certai nerotrmance index, one often would want

to know how the pelormance index varies as one or more of the parameters of the

system varv. Su h information wLll be useful, for example, in determining the

cosO-effuctivuness of tuning a system by varying some of the parameters. A study

by P'rioson [VI] on bin packing algorithims prnvid(,S an introsting example. For a

t syivvn hin p 'k 1i in, algoritihi, on,: alighl ask how Lh algorithnbehaves if instead

of nacking the "Lecu.; into hins of size I (the standard size) we shall pack
the pieces into bitis of Ii::e u, . I. This is exactly the case of determining

the performance oC a paging algorithm when the size of a page is increased.

For example, an interesting nuestion is how big the size of a page should become

so that a suboptimal paging algorithm will not used -more pages thin an optimal

naging algorithm when the latter uses nages of standard size. For a fixed k,

let FFI) (k) denote the maximum number o bins of size a used by the first fit

decreasing algorithm over all possible lists of pieces that can be packed by an

optimal algorithm usiniI k bins of standard size (I) divided by k. We have rFI'

... .V



'Vhemotom 5

I ira MF(k)
k -

I, 45/44) Il/0

1,43/44, 30/29) 29/24

C30/29, 2,524) 6/5

125/24, 20/19) 19/16

(20/I9, 8/7) 7/6

1"8/7, 15/13) 13/12

F15!13, 36/31) 31/30
pp

h 3h/'I, 4 8/41 ) 41/40

I48/41, 72/61) 61/60

r7'2/61, 2)
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